
Software Architecture of JTAG Security System

SANG-GUUN YOO, KEUN-YOUNG PARK, JUHO KIM

Department of Computer Science and Engineering

Sogang University

Mapo-gu Shinsoo-dong Sogang University, Seoul

REPUBLIC OF KOREA

jhkim@sogang.ac.kr

Abstract. : - The issue of JTAG security has recently become of interest not only to academic researchers but

also to industrial entities. As a response to this security need, several security approaches using fuses, key

matching, and three-entity authentication approaches have been proposed. However, each of those solutions

only provides the idea of the security mechanism or implementation of the hardware part of the security

solution without thinking of how the user can access such a solution in an effective manner in terms of ease of

use, administration, and practicality. In this paper, we share our experience in developing a real-life complete

software solution for a JTAG security system. The proposed software solution provides benefits such as ease of

use/administration, complete functionality, scalability, maintainability, and practicality. This work also shows

how a user-specific software solution can overcome the limitations of commercial applications and improve the

efficiency of special processes.

Key-Words: JTAG, software architecture, RUP, security

1 Introduction
Testability is a very important property of every

hardware device allowing the user to verify if the

device works correctly. In general, tests can be

divided into two groups: tests performed in the

factory during device production, and tests

performed during normal usage of the device. Tests

that belong to the first group permit the

manufacturer to select and reject devices that do not

comply with the assumed specification. The other

group of tests is dedicated to be performed during or

along with normal usage of the device. Their

assignment is to identify errors in device operation

and indicate its failure to the user. As a solution to

provide testability with ease of use and

effectiveness, JTAG was proposed. JTAG, also

known as Boundary Scan, was standardized in IEEE

1149.1 [1]. This standard defines a 5-pin serial

protocol for accessing and controlling the signal-

levels on the pins of a digital circuit, and has some

extensions for testing the internal circuitry on the

chip itself. However, because of the open access

characteristic of JTAG, this technology has been

used many times by unauthorized users to perform

different kinds of attacks, such as firmware

modifications and logic/circuit reverse engineering

[2-5]. For this reason, different groups have decided

to include security for JTAG as requirements in

their specifications, as occurs in the OMTP

Hardware Requirements and Defragmentation [6].

The issue of JTAG security has recently become

of interest not only to academic researchers but also

to industrial entities and there have been several

approaches proposed [7-16]. However, each of those

solutions only provides the idea of the security

mechanism or the implementation of the hardware

part of the security solution without thinking about

how the user can access such a solution in an

effective manner in terms of ease of use,

administration, and practicality. In this paper, we

describe our experience in developing a complete

software solution for implementing a real-life secure

JTAG environment. The proposed software solution

provides benefits such as ease of use/administration,

complete functionality, scalability, maintainability,

and practicality. We have based our software

solution based on the hardware and protocol

proposed in our previous work, which is detailed in

[16].

The rest of the paper is organized as follows.

Section 2 overviews the JTAG technology and why

its security is important. Section 3 then describes

briefly the JTAG security system based on

credentials, which is the system upon which we

have based our software solution. Later, in Section

4, we show the details of the development process

of the proposed application. Finally, Section 5

concludes the paper.

WSEAS TRANSACTIONS on SYSTEMS Sang-Guun Yoo, Keun-Young Park, Juho Kim

E-ISSN: 2224-2678 398 Issue 8, Volume 11, August 2012

2 Background
JTAG (Joint Test Action Group) is the common

name for the standard IEEE 1149.1 Standard Test

Access Port and Boundary-Scan Architecture [1].

JTAG was designed initially to handle some

problems of digital systems: faults in design,

fabrication, packaging, and PC boards. However, it

has been extended in various directions, including

features such as in-circuit configuration, debugging,

and device programming [19, 24]. As JTAG is

widely used these days, the necessary connections

for the JTAG interface are available on most

currently sold electronic devices, allowing

developers and testers to access the internal

resources of devices, including memories and

processors. However, JTAG also opens possibilities

for a malicious user to use this technology for

performing attacks to disable or corrupt the system,

extract embedded code or crypto keys, embed

disallowed functionalities without detection,

duplicate system design, and so forth [2-5], creating

a serious threat to the electronic device’s security.

The case of iPhone hacking is an example how

misuse of JTAG can allow functionality

modification of devices. On the Internet we can find

different applications that permit one to disable the

SIM Lock and Software control features of iPhones.

An example of the steps that the attacker can follow

to create such an application is as follows. (1) The

target device is opened to find the JTAG interface.

Many devices hide the JTAG pins to protect the

device from attackers. However, the attacker uses

the datasheets, manuals, hardware tools and probing

techniques for wires and pins to find the JTAG port

(Fig. 1). (2) Once the JTAG interface is found,

logical analysis tasks like device memory reading,

extraction of the firmware, dumping of memory,

and test data sampling are executed. (3) Using the

information collected in the previous step, reverse

engineering of the firmware and data stored in the

device is executed. Through reverse engineering, the

attacker develops a firmware modification. (4)

Using the JTAG port, the cracked firmware is

uploaded to modify the functionality of the device

(e.g. SIM unlocking and Jailbreaking).

Fig. 1 Finding JTAG interface

There are many other cases apart from iPhone

modifications, such as XBOX360, Wii, and

PlayStation modifications. In those cases, JTAG

was used to understand the illegal copy protection

features to then create a hardware component to

avoid such protection mechanisms (e.g. mod-chip).

JTAG was also used to determinate the Secret Key

of cryptographic chips.

As a response in order to reduce the risks

produced by JTAG misuse, many approaches such

as [7-16] have been proposed. However, each of

those solutions only provides the concept of the

security solution or implementation of the hardware

part of the security mechanism, without proposing

how the user can access the solution in an effective

manner in terms of ease of use, administration, and

practicality. The actual software solutions for JTAG

provide only limited features that cannot be adapted

for such security solutions. Some advanced

solutions, such as TRACE32, offers script languages

(e.g. PRACTICE [17]) for the execution of user-

specific processes; however, even those facilities

only provide very limited capabilities and they are

not practical in terms of ease-of-use, scalability,

user interactions, and so forth.

In the next sections, we share our experience in

developing user-specific software in solving the

problem of automation of a JTAG Security System.

Among the different JTAG security solutions, we

have decided to select our previous work [16]

because of its balanced benefits in terms of security

and usability.

3 JTAG Security System Based on

Credentials: Overview
In this section, we explain briefly our previous

work, called JTAG Security System Based on

Credentials, which we have based our software

solution on. As shown in Fig. 2, there are three

components that participate in the solution: Secure

JTAG, the Host Computer, and the Secure

Authentication Server. Secure JTAG is a hardware

module that allows blocking and unblocking of the

JTAG functionality through user authentication, the

Host Computer is the computer of JTAG user where

the JTAG tests are performed, and the

Authentication Server (or just Server) is the secure

component where the user account information of

JTAG users is stored.

In this scheme, only those users who own the

correct credential issued by the Server and its

password are allowed to use the JTAG port.

Therefore, users must ask for credentials to the

WSEAS TRANSACTIONS on SYSTEMS Sang-Guun Yoo, Keun-Young Park, Juho Kim

E-ISSN: 2224-2678 399 Issue 8, Volume 11, August 2012

server after a correct user authentication. Once the

credential has been issued, no further

communication with the server is necessary for

authentication with Secure JTAG. The scheme is

composed of two phases: the credential issue phase,

and the user authentication phase, as shown in Fig.

2.

The credential issue phase is the stage at which

the user receives a credential from the server. In this

phase, the server verifies the identity of the user and

provides the credential if the user is authenticated

and has permission to access the JTAG port. This

phase is executed with the following steps. First, the

user sends a request for a credential through the host

which receives the target JTAG’s ID and a

challenge from Secure JTAG. Next, the host passes

the data received from the device along with the

user and host information and the credential’s

password (selected by the user) through an

encrypted channel to the server. The server then

checks the validity of the data sent by the user and

authenticates the user. As a response to a valid

verification, the authenticated user receives the

credential and the credential verification data. The

user then sends to Secure JTAG the credential along

with credential verification data as a response to the

challenge. When Secure JTAG receives this

information, it checks its validity and after a valid

verification it generates the User Verification Data

which is used in the user authentication phase.

The user authentication phase is the process of

authenticating the JTAG user who owns a valid

credential corresponding to a Secure JTAG. In this

phase, Secure JTAG authenticates the user based on

the submitted credential and its password. The user

authentication phase is executed with the following

steps. First, the user sends a request for access

through the host which triggers Secure JTAG to

send a challenge to the host. Then, the host

generates a response using the credential and the

password sent by the user, and sends them to Secure

JTAG. Finally, Secure JTAG verifies the response

in order to authenticate the user and check his/her

permission, then controls the user’s access based on

the permission.

The scheme also includes a password change

protocol that allows users to change their passwords

at any moment.

3.1 Security Analysis
The security of the system was proven by using

different analysis in [16]. However, we have

included several additional verifications to

reconfirm its security in this paper. We recommend

to read [16] for the complete security analysis of the

system.

Security against insider attack: An insider

(legal user) may try to impersonate to be another

user. However, this is not possible because the

credential is issued independently per user using

his/her independent identification/password

combination. On the other hand, a legal user with a

valid certificate can try to guess secret values using

the data that he or she has access. However, this is

also not possible because the secret values are not

deducible using the values that are reachable by a

user i.e. certificates and communication messages.

Impersonation of User: We can assume that the

attacker who knows valid user identification can

attempt to receive a credential using its own

password for the certificate. However, this attack is

not possible because the Server decrypts the

received information using the random session key

generated previously and because the credential is

issued only after a valid verification of the

challenge-response process. This means that the

attacker cannot obtain the random session key and

execute a valid challenge-response process without

the valid password of the user, implying that the

attacker cannot deceive the server with spoofed

information.

Fig. 2 General view of JTAG Security System

Based on Credentials

The proposed JTAG user authentication scheme

uses a credential issued by the server; this

WSEAS TRANSACTIONS on SYSTEMS Sang-Guun Yoo, Keun-Young Park, Juho Kim

E-ISSN: 2224-2678 400 Issue 8, Volume 11, August 2012

information may leak because it is managed by the

debug host. Therefore, an attacker may be able to

copy the credential and attempt to authenticate

against Secure JTAG. However, this attack is not

feasible because in order to authenticate against

Secure JTAG, it is necessary to generate the correct

response for the challenge sent by Secure JTAG;

however, even though the attacker has the correct

Certificate, he cannot generate the correct Response

without the password of the certificate.

Impersonation of Secure JTAG: An attacker

can try to impersonate a Secure JTAG to capture

confidential information from the user during the

Certificate Issue or Authentication phases.

However, as the messages sent by the user to the

Secure JTAG do not contain any confidential

information, the attacker cannot obtain any

important value.

Impersonation of Server: An attacker can try to

impersonate the Server to capture secret data from

the user during the Certificate Issue and Password

Change phases. However, this is not possible

because the user does not send his/her password any

moment. Additionally, the authenticity of the server

is verified by the user by comparing the response of

the server with the value calculated by the user; this

is possible because the response of the server sent to

the user is calculated using the password of the user

stored only in the authentic server.

Replay Attack: Assume that an attacker can

eavesdrop on messages transmitted between Secure

JTAG and Host computer. In such case, the attacker

can copy the challenge-response values and try to

reuse them in new authentication trials. However,

all such trials will be denied by the Secure JTAG

because each authentication request makes Secure

JTAG to generate a new random nonce which

means it will generate new challenge message, and

the response (captured previously) sent by the

attacker will be different from the new requested

response value.

Brute force attack: An attacker can attempt to

authenticate against Secure JTAG repeatedly with

random or sequential data. The attacker can send an

authentication request to Secure JTAG and generate

the response for the received challenge. However, in

the same way as the replay attack, each request

Secure JTAG generates a new response, making the

attack infeasible.

Sniffing Attack: The attacker can attempt to

obtain confidential information by listening to the

network. However, any confidential information

regarding to passwords or keys are not sent directly

but sent through a secure symmetric cryptographic

algorithm. Therefore, the attacker cannot obtain any

valid authentication information by sniffing the

network.

Security Analysis per Levels: (1) Server: First

of all, the server is assumed to be secure. Therefore,

the confidentiality of the secret data stored in the

server is not considered in this paper. However, the

security against the impersonation of this entity is

guaranteed as explained previously in

“Impersonation of Server”. (2) Host: In case of the

host, it stores a confidential value, the certificate.

However, its leakage does not represent any security

problem because it is useless without its password.

Additionally, it is not possible to derivate any secret

data from its value. (3) Trace32: The trace32 only

works as a link between the secure JTAG and the

client software (it does not execute any calculation

during the certificate issue and authentication

phases). Therefore, there is not any important threat

in this level. (4) Secure JTAG: The security of the

Secure JTAG is guaranteed by the secure storage of

its key (using secure memory technologies [27]).

Additionally, the security against the impersonation

of Secure JTAG is guaranteed as explained

previously in “impersonation of Secure JTAG”.

4 Development of a Total Software

Solution for the JTAG Security

System Based on Credentials
We have decided to use the Rational Unified

Process (RUP) [18, 25] in the development of the

proposed software. RUP is a software engineering

process that provides a disciplined approach to

delegating tasks and responsibilities which can be

used in the development of different types of

software such as learning systems [21], service

applications [22], and simulators [23]. RUP is also a

guide for how to effectively use the Unified

Modeling Language (UML) [26] which is an

industry-standard language that allows developers to

clearly communicate requirements, architectures,

and designs. The goal of RUP is to ensure the

construction of high-quality software that meets the

needs of users, within an expected timetable and

budget. The Rational Unified Process divides the

development cycle into four phases: inception,

elaboration, construction, and transition phases.

Each phase is concluded with a well-defined point

in time at which certain critical decisions must be

made, and therefore key goals must have been

achieved. In this section, we give details of the

outcomes of the development of the software

solution for the JTAG security system based on

credentials separated by each phase of RUP.

WSEAS TRANSACTIONS on SYSTEMS Sang-Guun Yoo, Keun-Young Park, Juho Kim

E-ISSN: 2224-2678 401 Issue 8, Volume 11, August 2012

4.1 Inception Phase
During the inception phase, the business case and

delimitation of the project scope are established. All

entities of the system called actors and the

interactions with the system at a high-level are

identified. This involves identifying all use cases

and describing a few significant ones. Below is the

resultant output of the inception phase.

We have decided to call the software solution

“Secure JTAG Software Suite”. Fig. 3 shows the

general use case model of the proposed Secure

JTAG software suite which has three actors: one

representing the role of the JTAG user, which is the

person who requires JTAG features to execute the

development/testing processes; the second is the

Administrator of the system who manages the

system; and finally Secure JTAG which is the

hardware logic that controls the access to JTAG

features. The JTAG user can execute the credential

issue process using the “Get Credential” use case.

He/she can also change the password using the

“Change Password” use case, import/export/delete

credentials by using the “Manage Credential” use

case, and administer the configuration of the host

computer by using the “Manage Host

Configuration” use case. On the other hand, the

Administrator is allowed to manage the database of

the system and the configuration of the server by

using the “Manage Database” and “Manage Server

Configuration” use cases, respectively. Finally, the

Secure JTAG role interacts with the software suite

by using the “Authenticate Secure JTAG” use case.

Secure JTAG Software Suite

Get

Credential

Manage

Credentials

Manage Sever

Configuration

Change

Password

Authenticate

Secure JTAG

Manage

Database

JTAG User
Administrator

Secure JTAG

Manage Host

Configuration

Fig. 3 General Use Case Model

4.2 Elaboration Phase
The purpose of the elaboration phase is to analyze

the problem domain, establish a sound architectural

foundation, develop the project plan, and eliminate

the highest risk elements of the project.

4.2.1 General Architecture

The network connection model of the JTAG

security system is shown in Fig. 4. The system

involves four hardware levels. The first level is the

Server, the infrastructure where the user accounts

and user permissions to access JTAG devices are

stored. The second one is the Host which is the

computer from which the user gets the credentials

and/or access to the JTAG port. The third level is

the TRACE32 Hardware which is the In-Circuit

Emulator selected to access the JTAG resources; we

have chosen TRACE32 because it is manufactured

by the world’s largest producer of hardware assisted

debug tools, i.e. Lauterbach, and because it is one of

most widely used debugging tools in the high

technology industry, and also because (most

importantly) it was a requirement of the research

grant provider, i.e. Samsung Electronics. Finally,

the fourth level is the JTAG device, the device in

which Secure JTAG is incorporated.

Fig. 4 Network Connection of the JTAG Security

System

Based on the network connection model, we

have concluded that the development of three

different applications is necessary (see the

architectural model in Fig. 5).

Fig. 5 Architectural Model

1) Client Software: the client software is the

application used by the JTAG user to

request/receive the credential from the server,

authenticate to Secure JTAG to enable access to the

JTAG port, and request a password change. The

Client Software uses the TRACE32 API features to

communicate with Secure JTAG and an encrypted

WSEAS TRANSACTIONS on SYSTEMS Sang-Guun Yoo, Keun-Young Park, Juho Kim

E-ISSN: 2224-2678 402 Issue 8, Volume 11, August 2012

TCP socket channel to communicate with the Server

to execute the Credential issuing and password

changing processes.

2) Server Service Software: this is the software

that responds to requests from the Client Software.

It opens a TCP port for listening to client software

requests and is executed as a service in the Server.

3) Administration Software: this application is

used by the Server Administrator to manage the

database which stores information about the system.

Both applications are executed in the server i.e.

the Server service software and Administration

software and access a common database. The

technology selected for database connection is

OLEDB.

4.2.2 Use Case Modeling

The general use case model detailed in Fig. 3 is

broken down into three use case models according

to the detailed architectural model of Fig. 5. The use

case diagram of the Client software is shown in Fig.

6. The Client software has three actors: one

representing the role of the JTAG user, the person

who requires the features of JTAG to execute the

development or testing processes; the second

representing the Server service software, which is

the software executed in the Server and provides to

the Client software the credential issue and

password change features; and TRACE32 which is

the system that allows the client software to

communicate with Secure JTAG. The JTAG user

can request a credential issue and password change

using the “Get Credential from Server” and

“Change Password” use cases which will perform

their steps communicating with the Server Service

Software. The user can also execute different use

cases related to the management of credentials and

configuration of the application. Finally, the user

can communicate with the TRACE32 system to

request the locking or unlocking of the JTAG port

by using the “Lock JTAG” and “Unlock JTAG” use

cases.

Client Software

JTAG User

Unlock JTAG

Lock JTAG

Change

Password

Get Credential

from Server
Manage

Credentials

Manage

Configuration

TRACE32

Server Service

Software

Fig. 6 Client Software Use Case Diagram

The use case diagram of the Server service

software is shown in Fig. 7. The Server Service has

two actors: one representing the role of the Server

administrator, the person who manages the Server

service software; and the second representing the

Client software. The Server administrator can

initiate and stop the functionalities of the software

using the “Start Service” and “Stop Services” use

cases, respectively. He/she can also modify the

configurations of the software using the “Manage

configurations” use case. On the other hand, the

Client Software can request/get a credential and

change the password of a JTAG user by using the

“Issue Credential” and “Change Password” use

cases, respectively.

Server Service Software

Start

Service

Stop

Service

Server AdministratorManage

Configuration

s

Issue

Credential

Client Software

Change

Password

Fig. 7 Server Service Software Use Case Diagram

The use case diagram of the Administration

software is shown in Fig. 8. The Administration

software has one actor representing the role of the

Server administrator who manages the different

types of registers of the database.

Administration Software

Server Administrator

Manage

Device Types Manage

Devices

Manage Hosts

Manage

Users

Fig. 8 Administration Software Use Case Diagram

4.2.3 Detailed Architecture

4.2.3.1 Client Software

The client software is comprised of forms, classes,

external files (configuration file and credential

files), and a special library called TRACE32 API

encapsulated in the t32api.dll file. Details are shown

in Fig. 9.

Forms: Forms provide the visual interface to

interact with the user and detect events (e.g. the

click of a button, the filling out of a textbox). Events

detected by forms are processed by the code

incorporated in each event. Event codes create

object instances of classes, and these objects are

used to communicate with Secure JTAG (through

WSEAS TRANSACTIONS on SYSTEMS Sang-Guun Yoo, Keun-Young Park, Juho Kim

E-ISSN: 2224-2678 403 Issue 8, Volume 11, August 2012

TRACE32 API), Server Service Software,

Configuration File and Credential Files. We have

designed two forms in this software: (1) the main

form which executes almost all functions of the

application, and (2) the configuration form which

provides the interface to configure the application.

Classes: The client software manages five

different classes. The “cls_user” class manages the

data and operations related to JTAG user. The

“cls_user” class uses the classes “cls_trace32” and

“cls_connectionToServer” to create TRACE32 API

and TCP connections to access the Secure JTAG

and the Server Service Software, respectively.

Additionally, there are two additional classes,

“cls_credential” and “cls_configuration”, to manage

the credentials issued by the server and the

configuration data of the application.

External Files: The client software uses two

types of external files: credential and configuration

files. Credential files are those files containing the

credential that allows users to access the JTAG port.

This kind of file is created after a successful

credential issuing process and its format is shown in

Fig. 10. On the other hand, the Configuration File

stores the configuration information about the server

and its format is shown in Fig. 11.

Fig. 9 Detailed View of the Client Software

Fig. 10 Format of the Credential File

Fig. 11 Format of the Configuration File of the

Client Software

TRACE32 API: This API (Application

Programming Interface) provides a software

interface that enables control of the TRACE32

software. In our development, we have used the

latest library provided by Lauterbach. For additional

information, we recommend reading the documents

available in [20].

4.2.3.2 Server Service Software

The Server Service Software is comprised of forms,

classes, and external files (configuration file and log

files), as shown in Fig. 12.

Fig. 12 Detailed View of the Server Service and

Administration Software

Forms: forms provide a visual interface to

interact with the administrator of the server and

detect events (e.g. the click of a button, the filling

out of a textbox). Events detected by the forms are

processed by the code incorporated in each event.

Event codes create object instances of classes, and

these objects are used to communicate with the

Client Software, Database, Configuration File and

Log Files. There are two forms in this software: (1)

the main form which executes almost all functions

of the application, and (2) the configuration form

which provides the interface to configure the

application

Classes: The server service software manages

four different classes. The “cls_administrator” class

manages the data and operations of the

administrator. The application uses the

“cls_clientHandler” class to manage each TCP

connections coming from the client software.

Additionally, the Server Service Software uses the

“cls_applicationConfiguration” class and “cls_log”

class to manage the configuration data of the

application and the different logs generated by the

processes, respectively.

External Files: The Server Service Software

uses two types of files: log and configuration files.

WSEAS TRANSACTIONS on SYSTEMS Sang-Guun Yoo, Keun-Young Park, Juho Kim

E-ISSN: 2224-2678 404 Issue 8, Volume 11, August 2012

There are two kinds of log files. The first kind,

called a Server Log File, stores information about

the status change of the Server Service Software

(e.g. date/time when the service starts and stops);

and the second kind, called a Client Log File, stores

the log information about client connections. On the

other hand, the configuration file stores the

configuration of the Server service software. The

format of the configuration file is shown in Fig. 13.

Fig. 13 Format of the Configuration File of Server

Service Software

4.2.3.3 Administration Software

The Administration Software is comprised of forms

and classes. Details are shown in Fig. 12.

Forms: Each form provides the visual interface

to interact with the Administrator, and detects the

events. Events detected by forms are processed by

the code incorporated in each event. Event codes

create object instances of classes, and these objects

are used to communicate with the database. There

are twelve forms in this software.

- frm_main: this is the main MDI form that

contains the main menu of the application.

- frm_authentication: this form is loaded first

when the software is executed. This form

contains the visual interface to allow the

administrator to log in to the application.

- frm_deviceType: this form allows the

administrator to manage registers related to

device types.

- frm_device: this form allows the

administrator to manage registers related to

devices.

- frm_host: this form allows the administrator

to manage registers related to host computers

of users of JTAG devices.

- frm_addIP: this form allows the addition of IP

addresses of a host register.

- frm_addMAC: this form allows the addition

of MAC addresses of a host register.

- frm_login: this form allows the administrator

to manage registers related to administrator

users of this software.

- frm_user: this form allows the administrator

to manage registers related to JTAG users.

- frm_deviceList: this form allows the addition

of devices that a user can access.

- frm_hostList: this form allows the addition of

hosts from which a user can access the JTAG

device.

- frm_about: this form shows information about

the Software.

Classes: The Administration Software manages

seven different classes. The classes

“cls_deviceType”, “cls_device”, “cls_device_user”,

“cls_host”, “cls_host_user”, “cls_login”, and

“cls_login_user” are used to manage tuples of

different entities of the database. On the other hand

the “cls_applicationConfiguration” class is used to

manage the configuration data of the application.

4.2.4 Database Modeling

Both applications executed in the Server, i.e. the

Server Service Software and Administration

Software, make use of a common database which

stores all the information about users, devices, hosts,

and so forth. The conceptual model of the database

is shown in Fig. 14, and below are the descriptions

of each entity.

- LOGIN: Contains information about the users

authorized to use the Administration

Software.

- DEVICETYPE: Contains information about

the Types of Devices (JTAG devices

classification). For example: Mobile Phone,

Embedded Board, etc.

- DEVICE: Contains information about JTAG

devices.

- USER: Contains information about JTAG

users that are allowed to authenticate to the

JTAG Devices listed in the Devices Table.

- HOST: Contains information about Hosts

(Computer, Network, Ranges of computers)

from which a user can authenticate, change

password or perform the certification issue

process.

- IP: List of IP addresses of hosts.

- MAC: List of MAC addresses of hosts.

4.3 Construction Phase
During the construction phase, all remaining

components and application features are developed

and integrated into the product, and all features are

thoroughly tested. We have decided to develop the

JTAG Authentication Suite in C# with the Microsoft

.NET Framework 3.5 using Visual Studio as the

IDE because of the benefits such as simplicity,

WSEAS TRANSACTIONS on SYSTEMS Sang-Guun Yoo, Keun-Young Park, Juho Kim

E-ISSN: 2224-2678 405 Issue 8, Volume 11, August 2012

object orientation, and rapid development (see Fig. 15).

devi ce_user

devi cet ype_devi ce

host _user

i p_host mac_host

USER

i d_user
user name_user
passwor dSHA1_user
l ast Name_user
f i r st Name_user
company_user
depar t ment _user
phone_user
emai l _user
addr ess_user
descr i pt i on_user

<pi > Ser i al
Var i abl e char act er s (100)
Var i abl e char act er s (100)
Var i abl e char act er s (100)
Var i abl e char act er s (100)
Var i abl e char act er s (100)
Var i abl e char act er s (100)
Var i abl e char act er s (100)
Var i abl e char act er s (100)
Text
Text

<M>
<M>
<M>
<M>
<M>

I dent i f i er _1 <pi >

DEVI CE

i d_devi ce
name_devi ce
dui d_devi ce
encr ypt edKey_devi ce
ser i al Number _devi ce
descr i pt i on_devi ce

<pi > Ser i al
Var i abl e char act er s (100)
Var i abl e char act er s (100)
Var i abl e char act er s (255)
Var i abl e char act er s (100)
Text

<M>
<M>
<M>
<M>

I dent i f i er _1 <pi >

DEVI CETYPE

i d_devi ceType
name_devi ceType
descr i pt i on_devi ceType

<pi > Ser i al
Var i abl e char act er s (100)
Text

<M>
<M>

I dent i f i er _1 <pi >

HOST

i d_host
name_host
descr i pt i on_host

<pi > Ser i al
Var i abl e char act er s (100)
Text

<M>
<M>

I dent i f i er _1 <pi >

LOGI N

i d_l ogi n
user name_l ogi n
passwor dSHA1_l ogi n
sal t _l ogi n
l ast Name_l ogi n
f i r st Name_l ogi n
company_l ogi n
depar t ment _l ogi n
phone_l ogi n
emai l _l ogi n
addr ess_l ogi n
descr i pt i on_l ogi n
devi ceTypeAccess_l ogi n
devi ceAccess_l ogi n
host Access_l ogi n
userAccess_l ogi n
accessCont r ol Access_l ogi n
conf i gur at i onAccess_l ogi n

<pi > Ser i al
Var i abl e char act er s (100)
Var i abl e char act er s (100)
Var i abl e char act er s (100)
Var i abl e char act er s (100)
Var i abl e char act er s (100)
Var i abl e char act er s (100)
Var i abl e char act er s (100)
Var i abl e char act er s (100)
Var i abl e char act er s (100)
Text
Text
Var i abl e char act er s (5)
Var i abl e char act er s (5)
Var i abl e char act er s (5)
Var i abl e char act er s (5)
Var i abl e char act er s (5)
Var i abl e char act er s (5)

<M>
<M>
<M>
<M>
<M>
<M>

<M>
<M>
<M>
<M>
<M>
<M>

I dent i f i er _1 <pi >

I P

i d_i p
st ar t I P_i p
endI P_i p

<pi > Ser i al
Char act er s (15)
Char act er s (15)

<M>
<M>

I dent i f i er _1 <pi >

MAC

i d_mac
mac_mac

<pi > Ser i al
Char act er s (17)

<M>
<M>

I dent i f i er _1 <pi >

Fig. 14 Conceptual Model of the Database

Fig. 15 Development Environment

4.4 Transition Phase
The purpose of the transition phase is to transition

the software product to the user. Once the product

has been given to the end user, issues usually arise

that require you to develop new releases, correct

some problems, or finish the features that were

postponed. The simulation environment was

constructed as shown in Fig. 16. The Secure JTAG

logic was implemented in CT1156T2F-S Realview

Emulation Board using the logic as explained in

[16]. The Host computer and the embedded board

were connected using the In-circuit emulation tool

TRACE32 ICD. The Client Software was installed

in the Host computer; additionally, the TRACE32

software was loaded in the Host computer to

establish communication between the Client

Software and TRACE32 ICD. The Server Service

Software and the Administration software were

installed on a server. Finally, the database was

implemented in Microsoft SQL Server 2007. Fig. 17

and Fig. 18 show the software screens of the Client

Software, Server Service Software, and

Administration Software.

TCP/IP Network

ServerHost

Client

Software

TRACE32

Administration

Software

Server Service

Software

Database

Microsoft

SQL Server

Embedded Board

Secure JTAG

Logic

Fig. 16 Simulation Environment

We have executed different simulations in terms

of functionality and security, and all simulations

were executed without problems and neither

WSEAS TRANSACTIONS on SYSTEMS Sang-Guun Yoo, Keun-Young Park, Juho Kim

E-ISSN: 2224-2678 406 Issue 8, Volume 11, August 2012

notorious delays nor security holes were present,

demonstrating that the proposed software is usable

in a real JTAG authentication environment.

Fig. 17 Client-side user authentication software

Fig. 18 The Server service and Administration

software

With the simulation, we have shown how the

proposed software suite has improved the JTAG

security solution in terms of security and usability.

In the case of security enhancement, we can say that

before the Software Suite, the JTAG authentication

process was executed using the PRACTICE Script

Language which obligated users to store the

credential password in plaintext (or simple

codification) inside the script file, creating a high

probability of password leakage. Additionally, the

software improves security by creating an encrypted

channel between the host computer and the server

offering protection against sniffing, spoofing,

replay, and other network based attacks. In the case

of usability, the user does not need to interact

manually with the TRACE32 software anymore to

execute different script files containing the

commands of different steps of the authentication

protocol, because the software suite provides a

friendly user interface to efficiently access the

different features of the system. Furthermore, the

proposed software does not modify the working

environment (in this case, the TRACE32

environment), allowing developers/testers to work

without any additional effort.

5 Conclusion
In this paper, we have presented a case study in

which we have developed the automation of a JTAG

security system. The RUP methodology has been

applied allowing the participant of the software

development to clearly communicate requirements,

architectures, and designs. In the project, after

developing the models for the software, we

validated the models by directly working and

interacting with the engineers who were responsible

for implementing the different parts of the software

suite. Our case study has illustrated how a total

solution for JTAG security can be developed and

also has shown how user-specific software can

improve the efficiency of special processes by

complementing the features of commercial legacy

software without modifying the actual working

environment.

Acknowledgments

Part of this research was funded by the Industrial-

Academic Projects of Samsung Electronics. We

would like to thank the modem R&D team for

research fund support.

References:

[1] IEEE, IEEE Std 1149.1-2001 - IEEE Standard

Test Access Port and Boundary Scan

Architecture, 2001.

[2] B. Yang, K. Wu, R. Karri, Secure scan: a

design-for-test architecture for crypto chips,

IEEE Trans Comput Aided Des Integr Circuits

Syst, Vol. 25(10), 2005, pp. 2287–2293. DOI:

10.1109/TCAD.2005.862745.

[3] M. Breeuwsma, Forensic imaging of embedded

systems using JTAG (boundary-scan), Int J

Digit Forensics Incident Response, Vol. 3(1),

2006, pp. 32–42. DOI:

10.1016/j.diin.2006.01.003.

[4] B. Jack, Exploiting embedded systems, Black

Hat 2006, Las Vegas, USA.

http://www.blackhat.com/presentations/bh-

europe-06/bh-eu-06-Jack.pdf, Accessed 15 Jul

2011.

[5] A. Becher, Z. Benenson, M. Dornseif,

Tampering with Motes: Real-World Physical

WSEAS TRANSACTIONS on SYSTEMS Sang-Guun Yoo, Keun-Young Park, Juho Kim

E-ISSN: 2224-2678 407 Issue 8, Volume 11, August 2012

Attacks on Wireless Sensor Networks, LNCS

3934, 2006, pp. 104-118.

[6] OMTP Hardware Working Group, OMTP

hardware requirements and defragmentation,

Trusted Environment OMTP TR0, Open Mobile

Terminal Platform, 2006.

[7] A. Ashkenazi, D. Akselrod, Platform

independent overall security architecture in

multi-processor system-on-chip integrated

circuits for use in mobile phones and handheld

devices, Comput Electr Eng, Vol. 33(5-6),

2007, pp. 407–424. DOI: 10.1016/j.compele

ceng.2007.05.003.

[8] D. Hely, F. Bancel, M. Flottes, B. Rouzeyre,

Securing scan control in crypto chips, J

Electron Test: Theory Appl, Vol. 23(5), 2007,

pp. 457-464. DOI:10.1007/s10836-007-5000-z.

[9] W. Moyer, M. Fitzsimmons, Integrated circuit

security and method therefor, United States

Patent, Patent No. US7266848B2, 2007.

[10] F. Novak, A. Biasizzo, Security extension for

IEEE std 1149.1, J Electron Test: Theory Appl

Vol. 22(3), 2006, pp. 301–303. DOI:

10.1007/s10836-006-7720-x.

[11] M. Comulkiewicz, M. Nikodem, T. Tomczak,

Low-cost and universal secure scan a design-

for-test architecture for crypto chips,

International Conference on Dependability of

Computer Systems (DEPCOS-RELCOMEX),

2006, pp 282–288. DOI: 10.1109/DEPCOS-

RELCOMEX.2006.36.

[12] R. Kapur, Security vs. test quality: are they

mutually exclusive?, International Test

Conference (ITC), 2004, pp. 1414. DOI:

10.1109/TEST.2004.1387422.

[13] R. Kurt, K. Ramesh, Attacks and defenses for

JTAG, IEEE Des Test Comput, Vol. 17(1),

2010, pp. 36–47. DOI: 10.1109/MDT.2010.9.

[14] J. Lee, M. Tehranipoor, C. Patel, J. Plusquellic,

Securing scan design using lock & key

technique, International Symposium on Defect

and Fault Tolerance in VLSI Systems (DFT),

2005, pp 51–62. DOI:10.1109/DFTVS.2005.58.

[15] R. Buskey, B. Frosik, Protected JTAG,

International Conference Workshops on

parallel Processing (ICPP), 2006, pp 405–414.

DOI: 10.1109/ICPPW.2006.65.

[16] K. Park, S. Yoo, T. Kim, J. Kim, JTAG

Security System Based on Credentials, J

Electron Test, Vol. 26, Number 5, 2010, pp.

549-557. DOI: 10.1007/s10836-010-5170-y.

[17] Y. Ki, J. Seo, B. Choi, K. La, Tool support for

new test criteria on embedded systems: Justitia,

Proceeding of the 2nd international conference

on Ubiquitous information management and

communication, 2000. DOI:

10.1145/1352793.1352869.

[18] K. Fertalj, N. Hlupic, D. Kalpic, RUP and XP -

A Modern Perspective, WSEAS Transactions

on Information Science & Applications, Issue

8, Vol. 3, 2006, pp. 1573-1581.

[19] W. Yin, R. Sun, Z. Wan, Realization of

Distributed Remote Laboratory and Remote

Debug Software for Embedded System,

WSEAS Transactions on Systems, Issue 12,

Vol. 7, 2008, pp. 1433-1442.

[20] Lauterbach, Lauterbach Development Tools,

http://www.lauterbach.com, Accessed 15

October 19, 2011.

[21] F. Neri, A Comparative Study of a Financial

Agent Based Simulator Across Learning

Scenarios, Lecture Notes in Computer Science

7103, 2012, pp. 86-97.

[22] S. Yoo, K. Park, J. Kim. Confidential

information protection system for mobile

devices, Security and Communication

Networks, 2012. DOI: 10.1002/sec.516.

[23] S. Yoo, S. Kang, J. Kim, SERA: a secure

energy reliability aware data gathering for

sensor networks, Multimed Tools Appl, 2011.

DOI: 10.1007/s11042-011-0735-z.

[24] C. Kao, I. Huang, H. Chen, Hardware-Software

Approaches to In-Circuit Emulation for

Embedded Processors, IEEE Design & Test of

Computers, Vol. 25 Issue 5, 2008. DOI:

10.1109/MDT.2008.142.

[25] Rational, Rational Unified Process – Best

Practices for Software Development Teams,

Rational Software White Paper TP026B, Rev

11/01, 2001.

[26] A. Teilans, A. Kleins, Design of UML models

and their simulation using ARENA, WSEAS

Transactions on Computer Research, Issue 1,

Vol. 3, 2008, pp. 67-73.

[27] S. Chhabra, Y. Solihin, i-VNMM: a secure

non-volatile main memory system with

incremental encryption, ACM SIGARCH

Computer Architecture News – ISCA’11, Vol.

39, Issue 3, 2001, pp. 177-188. DOI:

10.1145/2024723.2000086.

WSEAS TRANSACTIONS on SYSTEMS Sang-Guun Yoo, Keun-Young Park, Juho Kim

E-ISSN: 2224-2678 408 Issue 8, Volume 11, August 2012

